000 16322nam a22002297a 4500
999 _c1389
_d1389
003 OSt
005 20180524144927.0
008 180524b ||||| |||| 00| 0 eng d
020 _a978-3-642-06260-5
028 _bAllied Informatics, Jaipur
_c4891
_d21/05/2018
_q2018-19
040 _aBSDU
_bEnglish
_cBSDU
082 _a621.31244
_bGOE
100 _aGoetzberger, A.
245 _aPhotovoltaic Solar Energy Generation
260 _aGermany
_bSpringer
_c2010
300 _a232
500 _aThis comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources
504 _aContents 1 What Is Photovoltaics? ................................... 1 1.1 What Is Photovoltaics? ................................ 1 1.2 Short History of Photovoltaics .......................... 2 1.2.1 Technology .................................... 2 1.2.2 Applications ................................... 5 1.3 Relevance of PV, Now and in the Future ................. 6 1.4 Markets, Economics ................................... 8 2 Physics of Solar Cells ..................................... 11 2.1 Basic Mechanisms of Energy Conversion . . . . . . . . . . . . . . . . . . 11 2.2 The Silicon Solar Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Silicon Solar Cell Material and Technology ............... 23 3.1 Silicon Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Monocrystalline and Multicrystalline Silicon . . . . . . . . . . . . . . 23 3.2.1 Technology of Czochralski and Float Zone Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 The Silicon Supply Problem . . . . . . . . . . . . . . . . . . . . . 27 3.3 Ribbon Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 The Main Approaches in Ribbon Silicon Production . . . . . . . . . . . . . . . . . . . . 28 3.4 Silicon Cell Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.1 Production of pn and pp+ Junctions . . . . . . . . . . . . . . 30 3.4.2 Oxidation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.3 Electrical Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.4 Antireflection Technologies . . . . . . . . . . . . . . . . . . . . . . 31 3.4.5 Status Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Advanced Si-Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5.1 High Efficiency Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5.2 Bifacial Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.3 Buried Contact Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.4 Interdigitated Back Contact Cells . . . . . . . . . . . . . . . . 36 3.5.5 OECO Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 3.5.6 a-Si/c-Si Heterostructures . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.7 Rear Side Contacted Cells . . . . . . . . . . . . . . . . . . . . . . . 38 3.5.8 Laser-Fired Contact Cells . . . . . . . . . . . . . . . . . . . . . . . 40 4 Crystalline Thin-Film Silicon ............................. 43 4.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 The Basic Components of a Crystalline Silicon Thin-Film Solar Cell . . . . . . . . . . . . . . 44 4.3 The Present Status of the Crystalline Silicon Thin-Film Solar Cell . . . . . . . . . . . . 47 4.3.1 Si Layers Deposited Directly onto Glass . . . . . . . . . . . 47 4.3.2 Si Layers on High-Temperature Resistant Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.3 Transfer Technologies of Monocrystalline Thin Si Films onto Glass . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Other Materials, New Concepts, and Future Developments ................................. 57 5.1 Theoretical Efficiencies and Requirements for Solar Cell Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 Thin-Film Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2.1 Amorphous Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2.2 Copper Indium Diselenide and Related Compounds . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.3 Cadmium Telluride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3 Other Materials and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3.1 Tandem Cells, Concentrating Systems. . . . . . . . . . . . . 73 5.3.2 Dye-Sensitized Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3.3 Organic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4 Theoretical Concepts for New High Efficiency Semiconductor Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.4.1 Auger Generation Material . . . . . . . . . . . . . . . . . . . . . . 78 5.4.2 Intermediate Metallic Band Material and Up and Down Conversion . . . . . . . . . . . . . . . . . . . 79 5.5 Past and Future Development of Solar Cell Efficiency . . . . . . 81 6 Solar Cells and Solar Modules ............................ 85 6.1 Characteristic Curves and Characteristics of Solar Cells . . . . 85 6.1.1 Characteristic Curves of Solar Cells. . . . . . . . . . . . . . . 85 6.1.2 Characteristics of Solar Cells. . . . . . . . . . . . . . . . . . . . . 86 6.2 Module Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7 PV Systems .............................................. 95 7.1 Stand-Alone PV Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.1.1 Consumer Applications . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.1.2 Solar Home Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.1.3 Residential Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.1.4 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.1.5 Photovoltaic Water Pumping . . . . . . . . . . . . . . . . . . . . 105 7.2 Grid-Connected PV Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.2.1 Decentralized Grid-Connected PV Systems . . . . . . . . 107 7.2.2 Central Grid-Connected PV Systems . . . . . . . . . . . . . 109 7.2.3 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8 PV Systems: Installation Possibilities ..................... 113 8.1 Geometrical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.2 PV Systems in Connection with Buildings . . . . . . . . . . . . . . . . 115 8.2.1 Advantages and Potential . . . . . . . . . . . . . . . . . . . . . . . 115 8.2.2 Installation on the Roof . . . . . . . . . . . . . . . . . . . . . . . . . 118 8.2.3 Roof-Integrated Systems . . . . . . . . . . . . . . . . . . . . . . . . 120 8.2.4 Facade-Integrated Systems . . . . . . . . . . . . . . . . . . . . . . 123 8.3 PV Sound Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.4 Solar Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8.4.1 Examples of Large PV Power Plants . . . . . . . . . . . . . . 130 8.4.2 PV and Plant Growth . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8.5 Sun-Tracked and Concentrating Systems . . . . . . . . . . . . . . . . . 132 8.5.1 Sun-Tracked Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.5.2 Concentrating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9 Environmental Impacts by PV Systems ................... 137 9.1 Environmental Impacts Due to Manufacturing of PV Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.2 Environmental Impacts from Operation of PV Systems. . . . . 137 9.3 Energy Payback Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.4 Land Area Required by PV Systems . . . . . . . . . . . . . . . . . . . . . 139 9.5 Recycling of PV Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.5.1 Recycling of Crystalline Silicon PV Modules . . . . . . . 141 9.5.2 Recycling of Amorphous Silicon PV Modules . . . . . . 144 9.5.3 Recycling of Compound Semiconductor Thin-Film PV Modules . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.5.4 Energy Demand for Recycling of PV Modules . . . . . . 146 10 Efficiency and Performance of PV Systems ............... 147 10.1 Stand-Alone PV Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.2 Grid-Connected PV Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.2.1 Final Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.2.2 Performance Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.2.3 Possibilities of Quality Control and Control of Energy Yield of Grid-Connected PV Systems . . . . 153 10.3 Long-Term Behavior of Grid-Connected PV Systems . . . . . . . 155 10.3.1 Solar Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.3.2 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.3.3 Mounting Racks and Fixing Materials. . . . . . . . . . . . . 158 10.3.4 Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.4 Electric Safety of Grid-Connected PV Systems . . . . . . . . . . . . 159 11 PV Markets Support Measures and Costs ................ 163 11.1 Market Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.2 Influences on the PV Market. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 11.2.1 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 11.2.2 General Investment Subsidy Programs . . . . . . . . . . . . 168 11.2.3 Sponsoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 11.2.4 Low Interest Loans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 11.2.5 Tax Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 11.2.6 Rate-Based Incentives or Feed-In Tariffs. . . . . . . . . . . 173 11.2.7 Green Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 11.2.8 Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 11.2.9 Solar Power Stock Exchange . . . . . . . . . . . . . . . . . . . . . 176 11.2.10 Cooperatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 11.2.11 Green “Utility” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 11.2.12 Tendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 11.2.13 Renewable Obligation Order or Renewable Portfolio Standard . . . . . . . . . . . . . . . . . 177 11.2.14 Installation on Leased Roof Areas . . . . . . . . . . . . . . . . 177 11.2.15 Political Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.2.16 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.2.17 Evaluation of Market Support Measures . . . . . . . . . . . 178 11.3 Cost of Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.3.1 Cost of PV Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.3.2 Cost of PV Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 11.3.3 Cost of Power Production . . . . . . . . . . . . . . . . . . . . . . . 184 12 The Future of PV ........................................ 187 12.1 Boundary Conditions for the Future Development of Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 12.1.1 Cost Development of Conventional Electricity . . . . . . 187 12.1.2 Effects of Liberalization and Environmental Restrictions . . . . . . . . . . . . . . . . . . 187 12.2 Cost and Market Development of Stand-Alone and Grid-Connected Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 12.3 PV in a Future Liberalized and Partly Decentralized Energy System . . . . . . . . . . . . . . . . . 189 12.3.1 Integration of PV into a Decentralized Energy System . . . . . . . . . . . . . . 189 12.3.2 Fully Autonomous Systems, Autonomous House Concepts . . . . . . . . . . . . . . . . . . . . 190 12.4 PV in a Centralized Energy System . . . . . . . . . . . . . . . . . . . . . . 191 12.4.1 Electricity from the Desert . . . . . . . . . . . . . . . . . . . . . . 191 12.4.2 Electricity from Space . . . . . . . . . . . . . . . . . . . . . . . . . . 192 13 Other (Perhaps Competing) CO2-Free Energy Sources .... 195 13.1 Other Renewable Energy Sources . . . . . . . . . . . . . . . . . . . . . . . . 195 13.1.1 Solar Thermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 195 13.1.2 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 13.1.3 Wind Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 13.1.4 Biomass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 13.1.5 Ocean and Wave Energy . . . . . . . . . . . . . . . . . . . . . . . . 206 13.1.6 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 13.2 Carbon-Free Combustion of Fossil Fuels: Carbon Sequestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 13.2.1 What Is Carbon Sequestration? . . . . . . . . . . . . . . . . . . 212 13.2.2 CO2 Capture and Separation . . . . . . . . . . . . . . . . . . . . 213 14 Popular Killing Arguments Against PV and Why They Are Not Valid ............................ 215 14.1 Solar Modules Consume More Energy for Their Production Than They Ever Generate . . . . . . . . . . . 215 14.2 PV Produces More Greenhouse Gases Than It Saves . . . . . . . 216 14.3 Grid-Connected PV Requires Lots of Back-Up Fossil Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . 216 14.4 PV Is Too Expensive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 14.5 PV Is Not Ready for Marketing, More Research Is Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 14.6 Installation of PV in the Northern Half of Europe Does Not Make Sense Because the Same Solar Cells Generate Electricity Much Cheaper in the South . . . . . . . . . . . . . . . . . . . 217 14.7 PV Involves Toxic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 14.8 PV Consumes Valuable Land Area . . . . . . . . . . . . . . . . . . . . . . 218 14.9 PV Competes for Roof Space with Thermal Collectors . . . . . 219 14.10 A Feed-in Tariff Causes Unacceptably High Electricity Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 References .................................................... 221 Index ......................................................... 229
650 _aElectrical
700 _aHoffmann, V.U.
942 _2ddc
_cBK