
- bandwidth (throughput)
- latency (delay)
- Bandwidth
 - single physical link
 - logical process to channel
- Definition of bandwidth: Number of bits transmitted/second

Width of Bit and Bandwidth

Indian Institute of Technology Madras

- Latency: How long a message takes to travel from one end of the network to another
- .Speed of light
 - propagation delay
- vacuum

cable fiber 3×10^8 m/sec 2.3×10⁸ m/sec 2.0×10⁸ m/sec

- Amount of time to transmit a unit of data
 - Network Bandwidth
 - Size of Packet
- Queuing delays
- (storing and forwarding at switches)
- Latency = propagation delay + transmit time + queue
- Propagation delay = distance / speed of light
- Bandwidth + latency = performance characteristics of a network

Performance Characteristics

- channel could be 1 Mbps / 100 Mbps
- Application behave different
 - across the continent
 - across the room
- Round trip time:
 - 1 Mbps 100ms
 - 100 Mbps 1ms

Performance Characteristics

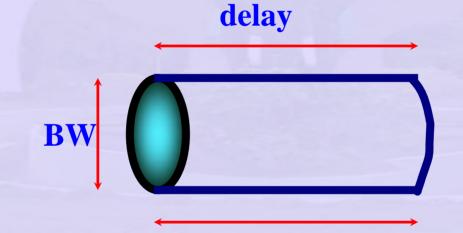
- Example:
 - Channel Capacity: 1x10 Mbps
 - Datalength: 10 bits
 - Transmit time = 10 *microseconds*
 - Channel = 100 Mbps bits / sec
 - Transmit time = 0.010 *microseconds*

Performance Characteristics

- RTT = 100 ms, 1 ms
- Latency = $100 + 10 \times 10^{-3}$
- = 100.010 ms
- Latency = $1 + 10 \times 10^{-3}$
- = 1.001 ms

– Latency dominated by RTT.

- Large files
 - Image of size 25x10⁶x8 bits
 - Channel Capacity 10x10⁶ bits/s
 - Time taken to transmit image 20 s
 - Suppose RTT = 1 ms
 - Latency = 20.001 sec
 - Suppose RTT = 100 ms
 - Latency = 20.1 sec
 - Bandwidth dominates latency

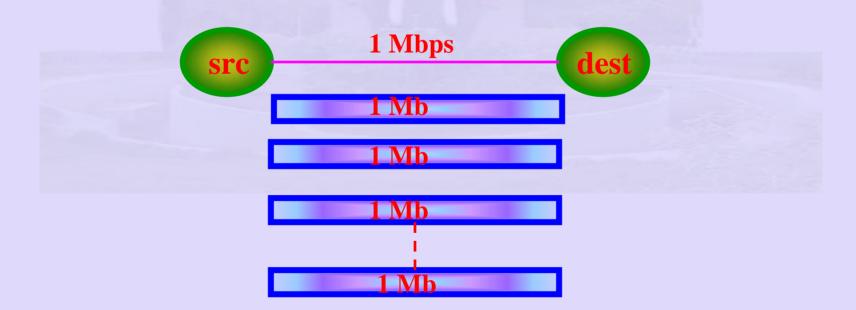

- Large Latency
 - Example: $CPU = 200 \times 10^6$ instructions/s
 - Latency 100ms, for 5000 miles

 $200 \times 10^{6} - 1$? - 0.1 $\frac{200 \times 10^{6} \times 0.1}{1} = 20 \times 10^{6} \text{ instr / sec}$ $\Rightarrow \frac{20 \times 10^{6}}{5 \times 10^{3}} = 4000 \text{ instr /mile}$

- 4000 instr / mile is lost
 - Is it worth going across network?
 - Bandwidth wasted
 - Solution
 - Treat the channel as pipe

Network as Pipe

Network as a Pipe


- Example
 - Latency 50 ms
 - BW 50 Mbps
- Pipe can hold
 - $-50\times10^{-3}\times50\times10^{6}$ bits of data
 - Bandwidth wasted if sender does not fill the pipe

- Throughput:
 - Transfer Size / Transfer Time
- Transfer Time
 - RTT + (Transfer Size / BW)
- If RTT large, increase in BW does not reduce transfer time

- Example:
 - Latency: 100ms
 - Channel Capacity: 1 Mbps, 1 Gbps
 - Data: 10 MB
 - On 1 Mbps channel
 - Time taken = 80.1s
 - On 1 Gbps channel
 - Time taken = 0.180s

- Throughput for 1 Mbps channel
 - 80/80.1 Mbps = 99.87 Mbps → very efficient
 → reaches channel capacity
- Throughput for 1 Gbps channel
 - 80/0.180 Mbps =444.4 Mbps → very inefficient → very low compared to channel capacity

• Stream of packets – 1 Mbps channel

• Single packet - 1 Gbps channel

