Data Link Layer

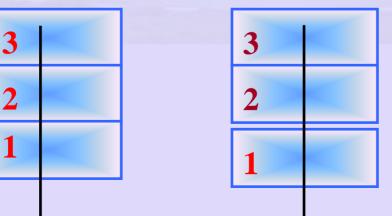
- Study of algorithms for achieving reliable, efficient communication between two adjacent machines at DLL.
- adjacent two machines physically connected using a communication channel that acts like a wire.
- issues bits should be delivered in the same order, they are sent.

Data Link Layer

- What is so difficult?
 - communication circuits
 - introduce errors (error control)
 - introduce propagation delay
 - circuits have a finite data rate
 - fast sender/ slow receiver
 - Not all machines have the same speed

DLL functions


- a well defined service interface to the Network Layer
 - Transfer data from source NW layer to destination NW layer
- Convert the data from the Network Layer into frames


DLL functions

- determines the bits of the physical layer that make up a frames.
- deal with transmission error
- regulate the flow of frames slow receiver are not swamped by fast senders

Data Link Layer Functions

• Assume a virtual circuit from source to destination at the DLL _{Virtual circuit}

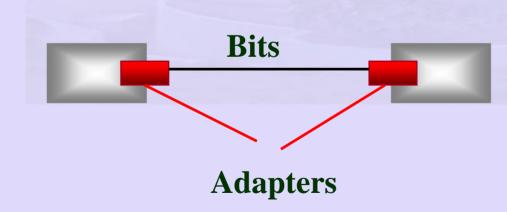
Data Link Layer Functions

- DLL processes on different hosts communicate with each other using a data link protocol.
 - Various Services provided:
 - Unacknowledged connection less service
 - Acknowledged connection less service
 - Acknowledged connection oriented service

Unacknowledge Connectionless Service

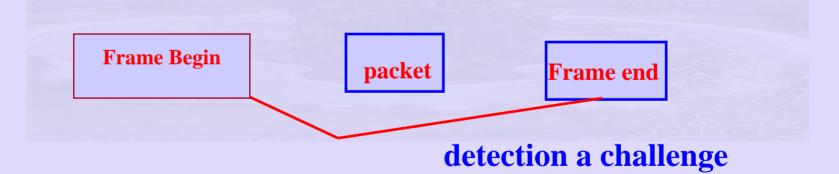
- source machine sends independent frames to the destination machine
 - w/o destination machine acknowledging them.
 - no connection established beforehand or released afterwards.
 - a frame lost, no efforts to recover it.
 - appropriate when error rate is low, recovery at higher layer.
 - appropriate for real time system speech better never than late!

Acknowledged Connectionless Service

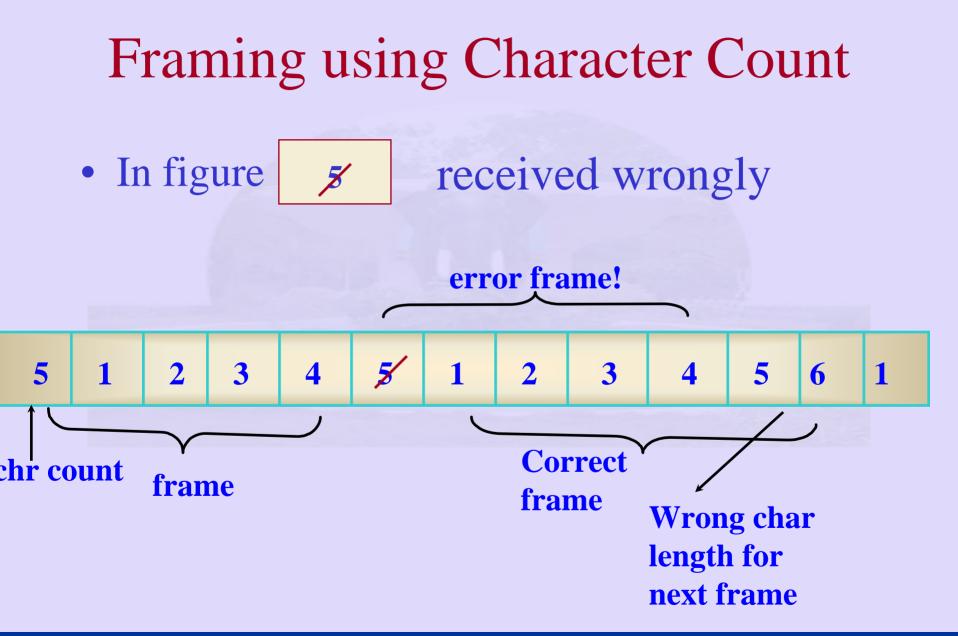

- no connection used but each frame individually added.
- sender knows whether frame received safely or not.
- useful over unreliable links wireless links!
- Acknowledged service: only optimise Transport service, not a requirement.

Connection Oriented Service

- establish connection between source, destination before data transferred.
- each frame numbered, DLL guaranties reception of all frames sent.
- each frame received only once, and in order
- reliable bit stream for NW layer.


Primary Tasks of DLL

- Framing:
- Insert time gaps between frames
 - LANs do not guarantee timing


Primary Functions of DLL

• Frame identified by begin and end bit patterns

Framing

- Byte Oriented Protocols
 - frame as a collection of bytes
- Bit Oriented Protocols
 - Methods devised:
 - Character count
 - Starting , ending characters with character stuffing
 - Starting and ending characters with bit stuffing.

Framing using Character Count

- Issues:
- Ask for retransmission of what?
 - which chars to transmit
 - duplication
 - where to start

Framing using Character Stuffing

- DLE STX (start of text)
- DLE ETX (end of text)
- receiver looses track of synchronisation look for
 - DLE STX
 - DLE ETX

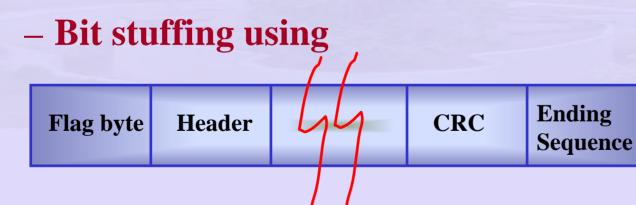
pattern resync

Framing using Character Stuffing

- What if data contains DLE
 - Example DLE
 - STX A DLE B DLE ETX
- Escape the escape character
 - DLE STX A DLE DLE B DLE ETX
- Drawbacks:
 - Character based
 - Frames occur ONLY at character boundaries

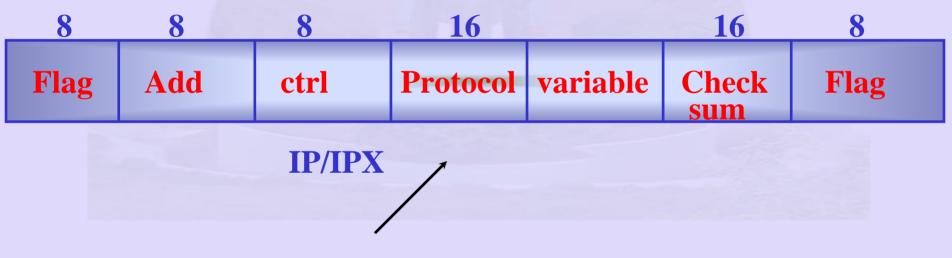
Framing using Bit Stuffing

- Allow arbitrary length frames
 - each frame begins and ends with a flag byte– 01111110
- whenever data contains 5 consecutive ones insert 0


Framing using Bit Stuffing

- Example:
 - 011011111111111110 NWL A
 - 0110111110111101110 Physical
 - 01101111111111110 NWL B
- Why bit oriented:
 - packets of different sizes for each packet header and trailer, bit stuffing.

Framing Protocols


- **BISYNC & PPP** use character stuffing
- **DECNET DDCMP count field**
- HDLC High Level Data Link Control

Body

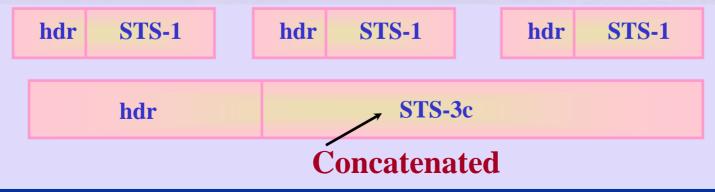
P-P-P Links

• Uses flag byte

LCP – Link Control Protocol

several field are negotiated: escape sequences

Clock-based Framing: SONET


- special information about the beginning and ending of frames.
 - no bit stuffing
- STS 1: 51.84 Mbps
- STS 1 frame: nine rows of 90 bytes each.
 - first three bytes of each row are over head and rest are data.

Clock-based Framing: SONET

- first two bytes special bit pattern (of frame)
- used for determining start of frame.
- bit pattern occurs in data resynchronisation
- expect this bits pattern every 810 bytes!
- actually SONET can implement its own network

Clock-based Framing: SONET

- SONET not over just a single link.
- SONET link implements packet switched NW.
- SONET provides better services
 - not only data provide voice also
- Can generate multiple STS-frames from STS-1

SONET-based Framing

- Issues
- floating payload across frame boundaries
 - uses overhead bytes to indicate the location of the start of frame
- Clock synchronisation
 - Used in Fibre networks