Medium Access Sublayer

- Topology of the Network
 - Bus, Ring, Tree
- Protocols
 - IEEE 802.3 for bus topology
 - IEEE 802.4 for token bus
 - IEEE 802.5 for token ring
 - FDDI for fibre ring
 - IEEE 802.11 for wireless networks

Network Topology

Network Topology

Network Topology

Tree and Bus Topologies

- multipoint medium
 - all stations attach through appropriate hardware interface called tap directly to the medium
 - full duplex operations on the bus
 - data propagates the length of medium in both directions
 - at each end bus terminated
 - absorbs any signal \rightarrow removes it from the bus
 - tree has a head end
 - since data propagated to all stations addressing required!

Star Topology

- central node acts as a broadcast
- although physically a star logically a bus
 - alternatively central node acts as a switch.
 frame switching copy frame send out on destination link
- problem central point failure

Ring Topology

- Repeaters joined by point to point links in a closed loop.
- no buffering
- unidirectional links
- destination recognises its frames & copies it
- frame removed by source
- In all topologies ONLY one station transmits at a time

Transmission in Networks

- Networks
 - Point-to-Point
 - Broadcast Networks
- Broadcast networks
 - Only one station transmits at a time → competition
 - who gets access to the channel
 - conference calls:
 - between six people only one channel
 - Who gets access?
 - multiaccess or random access channels

Broadcast Network-Solutions

- static allocation
 - wasteful of Bandwidth
 - more senders than channels
- Solution: Dynamic allocation of channels!

- Station model
 - N independent stations
 - Each user generates a frame for transmission
 - Pr[frame generated in time Δt] = $\lambda \Delta t$
 - → arrival rate for new frame
 - Once frame generated station blocks
 - does nothing until frame transmitted.

- Single channel assumptions:
 - Single channel for all communication
 - All stations can transmit and receive on it
 - All stations get a fair share of the channel

- Collision assumption:
 - Two frame transmit at the same time
 - signal garbled
 - All stations can detect collisions
 - A collided frame is retransmitted
 - Errors only due to collision

- Continuous time:
 - Frames can begin at any instant of time
 - No master clock dividing time into discrete intervals.
- Slotted time:
 - time divided into slots
 - frames start at the beginning of a slot
 - multiple frame / slot

- Carrier Sense:
 - Station can tell whether channel is in use
 - If carrier sensed do not transmit
 - What is carrier sense an electrical signal
- No carrier sense:
 - Station cannot detect carrier
 - go ahead and transmit
 - Later worry about success or failure