
The Ethernet Frame Format

Ethernet Frame Format

- Data in each frame maximum 1500 bytes, minimum 46 bytes
- Bit oriented protocol
- Ethernet frame: 14
- header (6 byte dest + 6 byte src + 2 byte type)
- Adapter attaches preamble, CRC, postamble before transmitting and receiving adapter, removes them

Ethernet Frame Format

- Every ethernet host has a unique address
 - 48 bit address:
 - Example: 8 : 0 : 2b : e4 : b1 : 2
 - 4 bit nibbles
 - each manufacturer of Ethernet device is allocated a fix prefix
 (24 bit)
 - Example: AMD: 24 bit 8:0:20
 - manufacturer ensures suffix is unique
 - frame transmitted is received by every adapter connected to Ethernet

Adapter Functions

- adapter recognises frame meant for itself passes to host (unicast address)
- adapter runs in promiscums mode
 - listen to all frames
 - adapter must be programmed to do this
- adapter accepts frames with multicast address
 - provided adapter has been programmed to listen that address

Adapter Functions

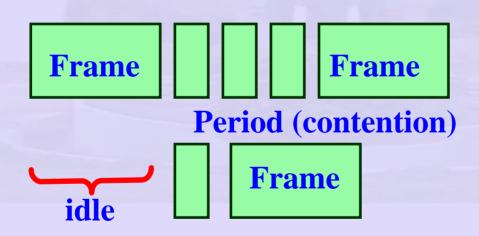
- No centralised control
- Two station begin transmitting at the same time
- Each sender can detect collisions receiver detects collision sends
- A 32 bit jamming sequence is sent to indicate a collision

Ethernet Conventions

- Minimal transmission:
- 64 bit + 32 = 96 bit
- Preamble jamming sequence
- To ensure frame did not collide with another send
 - 14 bytes header + 46 bytes data + 4 byte
 CRC = 512 bits

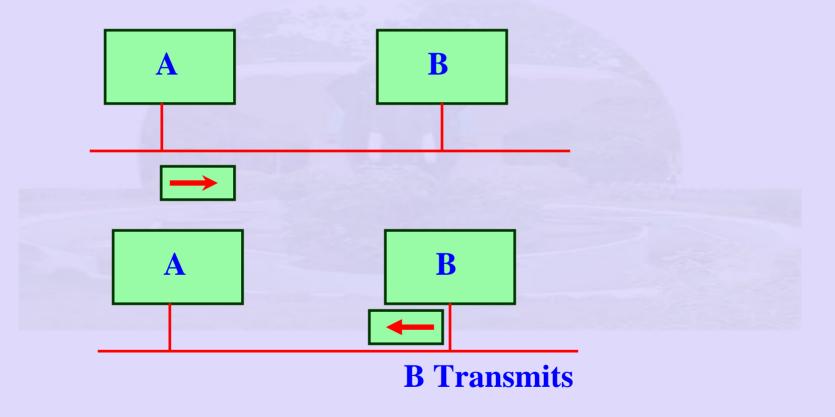
Ethernet Example

- 2500 m + 4 repeaters
- 10 Mbps delay 51.2 μ s
- = 512 bits
- collision detected
 - use binary exponential backoff
- First: 0, 51.2 μs
- Second: 0, 51.2, 102.4 μs


Ethernet Conventions

- Collision again
- wait k $\times 51.2 \mu s$
- for $0, 2^3 1$
- randomly select k between $0 2^n 1$
- n number of collision experienced
- retry upto 16 times

Popularity of Ethernet


- 200 hosts / NW
- Most Ethernets shorter than 2500 m
 - delay $5 \mu s$ rather than $51.2 \mu s$
- No routing
- No configuration
- Easy to add new hosts
- Cable cheap, adapter cheap switch based approaches expensive

Ethernet: Overhead: Collision detection

Contention detection: Depends on propagation delay

Ethernet: Collision detection

Ethernet Analysis

- B detects collision
 - sends jammer to A
 - Jammer takes 2a time to reach A
- frame size 1
- 2a end to end propagation delay
- CSMA / CD : medium organised as slots
 - length is 2a

Ethernet Analysis

- slot time max time from start of frame to detect collision = 2a.
- CSMA analysis:Assumptions
 - infinite population
 - Poisson arrival
 - unslotted non persistent
 - fixed frame size

Ethernet Analysis

$$P[success] = e^{-aG}$$

Offered Load $S = Ge^{-aG}$

a is the propagation delay

Frame time is 1

CSMA – *p-persistent*

- Station acquires a slot
- p- probability of transmission during a slot
- Let k be the number of stations
- The probability that only one station transmits in a slot is
- $\bullet \quad P = kp(1-p)^{k-1}$

CSMA – p-persistent

Mean length of contention interval

 $E[(i-1) \ collision \ slots \ followed \ by \ a \ success]$

$$=\sum_{i=1}^{\infty}iP^{i-1}(1-P)$$

$$= \sum_{i=1}^{\infty} i(1-A)^{i-1}A$$

$$=\frac{1-A}{A}$$
 slots

Efficiency

time in slots for transmitting data
$$=\frac{1}{2a}$$

$$Utilisation = \frac{\frac{1}{2a}}{\frac{1}{2a} + \frac{1-A}{A}}$$

$$k \to \infty, A \to 1/e$$

$$Utilisation = \frac{1}{1+3.44a}$$

Timing Diagram

Transmission interval 1/2a slots

Sequence of slots with no transmission or collision