- Reservation Protocols
- Station have a unique address 0,...,N-1
- Bit mapped protocol:
 - Contention period divide into N slots
- station 0 can only send a 1 bit in that slot.

- Station j announces that it has a frame to transmit by inserting a bit in slot j.
- After all N slots have passed by
 - every station knows numerical order
 - Now transmit in Numerical order
 - no collision at all!

- After last ready frame transmitted
 - an event generated
- New N bit contention period
- If a station misses
 - wait for next contention period

- After all stations have transmitted probability of having a frame to transmit middle of slot
 - wait 1 ¹/₂ contention period before transmitting
- Always 1 bit/station/frame transmitted is the overhead

High load
$$U = \frac{d}{Nd + 1}$$

Low load $U = \frac{d}{d + 1}$

$$d-frame$$
 size

Contention Free Protocols

- Binary Countdown:
- Better than bit mapped protocols
- Use binary station addresses
- Each station broadcasts address
 - Example: 0010 0100 1001 1100

Contention Free Protocols

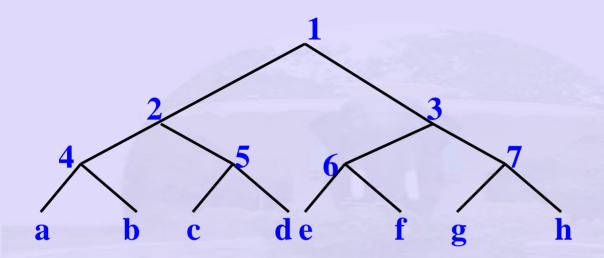
- All addresses same length
- Bits in each position from different stations are ORed
- Collision avoidance
 - arbitration rule
 - if high order bit position of station address overwritten by 1 give up!

1100 – gets access! Next new cycle of contention start

Binary CountDown: Analysis

d $d + \ln_2 N$

If the higher order bits of a station j address are 1, station j transmits continuously


Limited Contention Protocols

- combine the properties of contention and collision free protocols
- contention at low load to provide low delay
- reservation at high load

Adaptive Tree Walk Protocol

- Adaptive TreeWalk Algorithm
 - low load
 - every body contends
 - collision -
 - reduces number of stations

Adaptive Tree Walk Algorithm

First contention all stations permitted to contend

- if collision then next slot only nodes under 2 can contend
- if success next slot Nodes under 3
- if collision then nodes under Node 4
- if success next slots Nodes under 5

Indian Institute of Technology Madras

Adaptive Tree Walk Algorithm

- Depth first tree walk algorithm
- Heavy load do not start searching at top of tree
 - what level to start the search?
 - depends on number of ready stations

Adaptive Tree Walk Algorithm

- Each node at level i has N. 2⁻ⁱ station under it.
- q ready stations uniformly distributed at level i 2⁻ⁱq
- level at which search begins
 - $-2^{-i}q = 1$
 - $-i = \log_2 q$