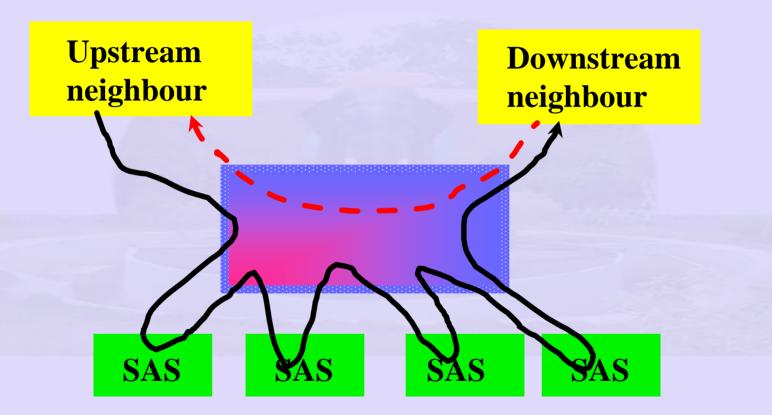

Fibre Distributed Data Interface

- Runs on fibre and not copper
- dual ring
 - two independent rings transmitting data in opposite direction
 - second not used for normal operation
 - used only if primary fails


FDDI Ring

FDDI Ring

- Expensive twice the amount of fibre
 - stations may be allowed to connect on a single cable
 - single attachment station (SAS)
- use concentrator to connect several SASs to dual ring

Concentrator detects failure of SAS - Optical bypass to isolated failed SAS

FDDI Ring

- Each NE Adapter hosts some number of bits between its input and output interfaces
 - Variable buffer size
 - $9 \le \text{buffersize} \le 80 \text{ bit}$
- Station transmits an amount equal to half buffer
- Total time depends on buffer

Delay in FDDI

- Example: 100 Mbps FDDI
- - 10 ns for bit time
- Each station 10 bit buffer waits until buffer half full before transmitting

 station introduces 50 ns delay into TRT

FDDI – Physical Characteristics

- 500 stations with a maximum distance of 2km between any pair
- maximum network length : 200km
- 100 km connecting all stations (dual ring)

FDDI – Physical Characteristics

- FDDI encoding:
 - 4B/5B encoding
 - Replace 4B with 5B code such that no more than one leading zero,
 - no more than two trailing zeros and no more than 3 consecutive zeros

Asynchronous vs. Synchronous Traffic

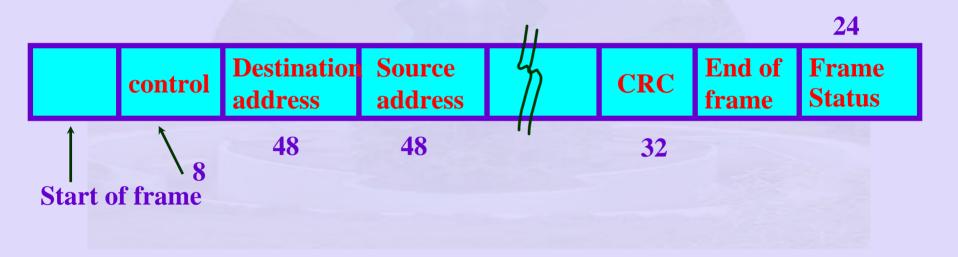
- Synchronous traffic
 - Traffic is delay sensitive
 - station transmits data whether token is late or early
 - But synchronous cannot exceed one TTRT in one TRT
- Asynchronous traffic
 - Station transmits only if token is early

Measurement of Token Rotation Time (TRT)

- Target Token Rotation Time (TTRT agreed upon time)
- Time between successive token arrival TRT observed by any node
- TRT > TTRT
 - token late station does not transmit data
- TRT < TTRT
 - station holds token until TTRT
 - down stream station may not be able to transmit

Token Maintenance

- Process of setting up TTRT
- Monitor ring to ensure token has not been lost
- Fix TTRT each node bids for the TTRT
- Idle time between valid transmissions that a given node experiences is
 - ring latency + time to transmit a full frame
 - 2.5 ms maximally sized ring
- If timer expired then claim token
 - TTRT lower used
 - Lower TTRT new node enters the bidding process by


FDDI: Analysis

- Worst Case
 - Nodes with asynchronous traffic use one TTRT
 - Next nodes with synchronous traffic in one TTRT
- TRT at a node = 2 * TTRT
 - Synchronous traffic TTRT
 - Next no asynchronous token late

FDDI Analysis

- No back to back transmission of TTRT
 - When does a node transmit asynchronous data
 - TRT $+ \varepsilon =$ TTRT => Transmit
 - Total TRT = TTRT + full FDDI frame
- if claim frame makes it all the way back to the original sende
 - node knows it is only active bidder => safely claim the token

FDDI Frame Format

