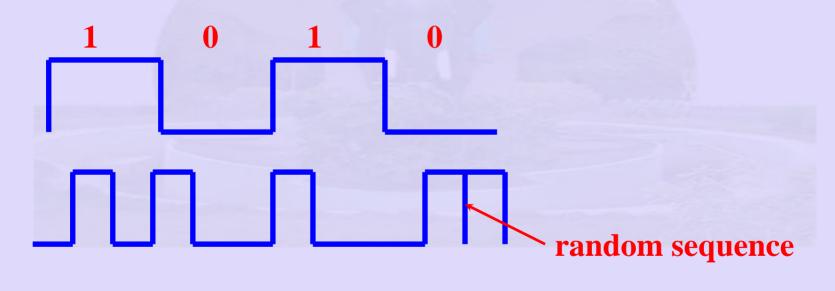
Wireless LANs

- Infrared, radio
 - Within room → Satellite communication
- IEEE 802.11
 - Limited geography
 - Primary challenge
 - Mediate access to a shared medium

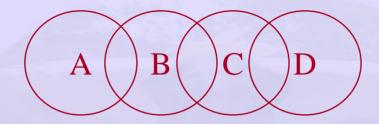

Physical Properties

- Three different mechanisms
- Two based on spread spectrum
 - Up to 2 Mbps
- One on diffused infrared
 - $-\frac{1}{2}$ Mbps

Transmission in Wireless Media

- Spread spectrum:
 - frequency hopping (randomly choose frequencies)
 - direct sequence
- Direct sequence:
 - represent each bit by multiple bits in the transmitted signal

n-Bit Chipping sequence based transmission



XOR of sequence

n-Bit Chipping Sequence

- n bit chipping code spreads the signal across frequency band
- that is n time 3 bit chipping sequence.
- 802.11: 79 MHz wide frequency bandwidths
 - 2.4 GHz frequency range
 - 11 bit chipping sequence
- Collision Avoidance in 802.11
 - similar to Ethernet problem

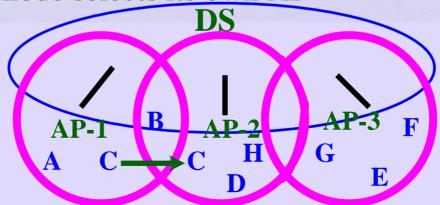
Hidden Nodes

- Each node has a finite range
- A can reach B, C can also reach B
- A and C want to communicate with B
- A and B are unaware of each other
- Collision can happen at B
- A and C are hidden nodes

Exposed Nodes

- Transmission from B to A
 - C is aware of this
 - Since C in the range of B
 - But C can transmit to D

Multiple Access Collision Avoidance


- Sender and receiver exchange control frames:
- Request to Send (RTS) Sender → Receiver
 - (includes the time for which it wants to hold the medium)
- Clear to Send (CTS) Receiver → Sender
 - (echoes length field back)
- Any node sees CTS
 - close to Receiver therefore cannot access medium for time = length of frame

Multiple Access Collision Avoidance

- Node sees RTS but not CTS
 - It is not close to receiver
 - It can transmit to some other node
- Two or more nodes send RTS, donot hear CTS
 - Collision, therefore backoff
- Include Ack (MACAW)
 - Receiver to sender after frame successfully received
- Issues: Nodes mobile require a distributed system

Distributed System

- Problem of mobility
 - Some nodes are mobile, some are connected to a wired infrastructure
 - Access points (AP)
 - Each AP connected to a distribution system
 - Each node selects its own AP

Scanning for AP

- Node sends a Probe frame
- All APs nodes within reach reply with a probe response frame
- Node selects one and sends that AP an associate request
- AP responds with association response
- Node uses this when it moves / changes
- New AP notifies old AP
- Nodes scan APs and APs also send Beacon frames

Frame Format

Ctrl	Duration	Addr 1	Addr 2	Addr 3	Seq ctrl	Addr 4	Payload	CRC
16	16	48	48	48	16	48	0-18, 496	32

- •Addr1 destination AP
- •Addr 2 destination address
- •Addr 3 source AP
- •Addr 4 source address

- •Ctrl
 - •Type 6 bit (CTS, RTS,
 - Scanning)
 - •ToDS 1 bit
 - •From DS 1bit