Packet Switching

- Not all nodes connected to each other
- Need Switches
 - Packet Switches
 - Enable packets to go from one host to another that is not directly connected

Switch: Multi-input Multi-output

Switches: Functions

- Receive incoming packets on incoming ports
- Forward on to outgoing ports
- Not forward all traffic
- Switch must have aggregate capacity
- Help build large networks

Switches: Functions

- Switching
 - Connectionless (datagram)
 - Using destination address in packet consult forwarding table to decide how to forward packet
 - Connection oriented (virtual circuit)
 - First establish a circuit from source to destination
 - Then forward packets on this circuit

Table lookup for switching $c \xrightarrow{d} 1$ $2 \xrightarrow{l} 2$ $2 \xrightarrow{l} 2$					
Switch 2	$a \frac{1}{3}$				
Destination	Port	0			
a	3				
b	0	gb			
с	3	2			
d	3	h			
e	2	Easy when entire map of network is			
f	1	Available			
g b	0	Configured at the time of network			
h	U	setup			

Bridges and LAN Switches

• Bridge is also a switch

Indian Institute of Technology Madras

Source Routing Bridges

- Sender knows the location of destination address
 - LAN number, Bridge number
 - Example:
 - H11 on LAN1 wants to talk to H21 on LAN3
 - Route packets LAN1, B3, LAN2, B4
 - Each LAN has a unique number and each bridge on a LAN has a unique number

Source Routing

Indian Institute of Technology Madras

Virtual Circuit Switching

• host a wants to communicate with b

VC Tables

- An incoming interface
- An incoming virtual circuit identifier (VCI) for incoming packet
- An outgoing interface
- An outgoing virtual circuit identifier (VCI) for outgoing packet
- New Connection
 - Assign VCI not in table
 - Incoming VCI and outgoing VCI not globally unique

Setting up VCs

• Dynamic setting up of VC

- Setup message all the way from a to b and back
 - Choose unused VCI 4 a to S1
 - Choose VCI 10 from S1 to S2
 - Choose VCI 6 from S2 to S3
 - Choose VCI 4 from S3 to b
 - When connection not required tear down connection, free VCI, switches updated
- Other VCs
 - Permanent set by network administration
 - Temporary setup for duration of connection

VC Tables

• VC Tables setup before data transmission

•	VC Table S1:						
•]	In IF	In VCI	Out IF	Out VCI		
•		3	4	2	10		
•	VC Table S2:						
•		In IF	In VCI	Out IF	Out VCI		
•		0	10	1	8		
•	VC Table S3:						
•]	ln IF	In VCI	Out IF	Out VCI		
•		1	8	0	5		

VC Switching Issues

- Delays due to circuit setup
- Connection request full destination address
- Switch or link failure
 - New one has to be established again
- Route known before data being sent
- Requires flow control

VC Switching Advantages

- QoS guarantees
- Switches set aside resources
- Generally queues do not build up

 Since traffic is delay sensitive
- Examples: X.25, Frame Relay (VPN), ATM