Packet Switching

- Not all nodes connected to each other
- Need Switches
- Packet Switches
- Enable packets to go from one host to another that is not directly connected

Switch: Multi-input Multi-output

Switches: Functions

- Receive incoming packets on incoming ports
- Forward on to outgoing ports
- Not forward all traffic
- Switch must have aggregate capacity
- Help build large networks

Switches: Functions

- Switching
- Connectionless (datagram)
- Using destination address in packet consult forwarding table to decide how to forward packet
- Connection oriented (virtual circuit)
- First establish a circuit from source to destination
- Then forward packets on this circuit
for switching
Switch 2

Destination	Port
a	3
b	0
c	3
d	3
e	2
f	1
g	0
h	0

Bridges and LAN Switches

a node acts as a filter

- Bridge is also a switch

Source Routing Bridges

- Sender knows the location of destination address
- LAN number, Bridge number
- Example:
- H11 on LAN1 wants to talk to H21 on LAN3
- Route packets LAN1, B3, LAN2, B4
- Each LAN has a unique number and each bridge on a LAN has a unique number

Source Routing

Entire route from source to destination in packet header

Virtual Circuit Switching

- host a wants to communicate with b

VC Tables

- An incoming interface
- An incoming virtual circuit identifier (VCI) for incoming packet
- An outgoing interface
- An outgoing virtual circuit identifier (VCI) for outgoing packet
- New Connection
- Assign VCI not in table
- Incoming VCI and outgoing VCI not globally unique

Setting up VCs

- Dynamic setting up of VC
- Setup message all the way from a to b and back
- Choose unused VCI 4 a to S1
- Choose VCI 10 from S1 to S2
- Choose VCI 6 from S2 to S3
- Choose VCI 4 from S3 to b
- When connection not required - tear down connection, free VCI, switches updated
- Other VCs
- Permanent - set by network administration
- Temporary - setup for duration of connection

VC Tables

- VC Tables setup before data transmission
- VC Table S1:

-	In IF	In VCI	Out IF
- Out VCI			
-	3	4	2

VC Switching Issues

- Delays due to circuit setup
- Connection request full destination address
- Switch or link failure
- New one has to be established again
- Route known before data being sent
- Requires flow control

VC Switching Advantages

- QoS guarantees
- Switches set aside resources
- Generally queues do not build up
- Since traffic is delay sensitive
- Examples: X.25, Frame Relay (VPN), ATM

