DG Forwarding Algorithm

- Host or Router first check if destination on same Network
 - Router multiple interfaces
 - Match found deliver to that Network
- If not found default router
- for every router a default router MUST be defined

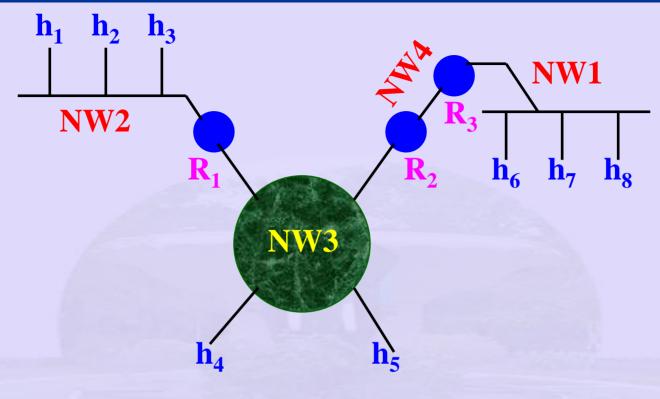
Routing Packets

Routing table:

<inlink, in id, outlink, out id>

- for every VC through router

Upper	DG	VC
layer CL	UDP over IP	UDP over IP over ATM
CO	TCP over IP	ATM AAL over ATM


Host Forwarding Algorithm

- If (NetworkNumber of Destination = NetworkNumber of given Destination) then
 - deliver packet directly
- Else
 - deliver packet to default router
- endif

Router Forwarding Algorithm

- If (NetworkNumber of Destination = NetworkNumber of given routing interfaces) then
 - deliver packet over that interface
- else
 - deliver packet to default router
- endif

Computer Networks Prof. Hema A Murthy

Forwarding table at Router R₂

Network	Next hop
2	R_3
	* 1 (1)

Router Forwarding Algorithm

 $h_1 - h_2$ data same Network number therefore deliver data directly! over Ethernet

h₁ has to find h₂'s correct Ethernet address

- ARP

h₁ – h₈ – different Physical Network

R₁'s default router R₂

 R_1 – sends DG to R_2 over token Ring

R, table

Notwork	Novt hon	
Network	Next hop	
	R ₃	
	3	
2	\mathbf{R}_{1}	
2	Interface 1	
2	Interface 0	

Information in Routing Table

- Directly connected Networks
- Reachable via some hop router
- Forwarding table can be manually configured
 - Usually done by running a routing protocol
- Routers only have address of Networks
 - rather than complete hosts
 - scalability hierarchical aggregation

The Internet

- Collection of subnetworks of Autonomous System (ASes) connected together
 - No real structure
 - High bandwidth backbones
 - Attached to Backbone several middle level Networks
 - Attached to which are various LANs
 - Glue all this using IP
 - Best effort way to transmit DGs from source to destination

Routing

(Network, 0), (thisnetwork, host)

Distant LANs Host on this LAN

Routing

- When packet arrives:
 - Lookup table
 - For distance LAN forward to next router on the interface given in the table
 - If local host on router's LAN send to host
 - If network not found forward to a default router with more extensive tables

- All host in a network must have the same network number
 - Problem:
 - Class C 254 addresses
 - Needs new Class C network address
 - Multiple LANs its own router?

- Alternatively:
 - Class B network address
 - Split 16 bit host into
 - 6 bits for subnet
 - 10 bits for host
 - 2¹⁰ 2 Hosts
 - 26 2 LANs

- Router must know subnet mask
 - To determine route for
 - 144.16.251.25
 - AND with 255.255.0.0 (subnet mask)
 - Gets rid of host in class B
 - AND with 255.255.255.0
 - Gets rid of host in Class C

- Router
 - Needs Subnet mask table
 - To ensure proper delivery
- Destination Address:
- 130.50.15.6 arrives at a router on Subnet 5
- 130.50.000101.0 subnet address AND with
- 255,255,252,0
- 255.255.111111100.0
- Gets rid of host
- Two results 130.50.12.0
- 130.50.00001100.0 which is subnet 3

- Outside world:
- Appear a single LAN
- To the corporate LAN
 - Multiple subnetted LANs
- Modify routing Tables to include:
- (this-network, subnet, 0)
- (this-network, this-subnet, host)
- Router on subnet
 - needs information about hosts on subnet
 - needs information about how to get to other subnet