
Congestion vs. Flow Control

- Flow control:
 - End-to-end

- Congestion control
 - Router to Router

Congestion control vs. Flow control:

- Slow processor at the router even though line capacity is high
- Mismatch between different parts of the system

Congestion vs. Flow Control


- Router discards packets when it cannot serve
 - Sender retransmits until acknowledged
 - Congestion builds up
- Flow Control
 - Pt Pt links between a given sender and a given receiver
 - Fast sender does not overwhelm receiver
 - Receiver can tell sender directly to slow down

Congestion Control

- •General principle of congestion:
 - •Monitor system to detect when and where congestion occurs
 - •Pass this information to places where action can be taken
 - •Adjust system operation to correct the problem

Congestion vs. Flow Control

- Policing traffic at routers
 - Token bucket / leaky bucket
 - non trivial
- Alternative flow specifications:
 - Agreed between sender and receiver
 - pattern of injected traffic
 - **QoS** desired by Application

- Routers loose packets
- Buffering?
 - No use

- Packet reaches front of Queue, duplicate generated

Traffic Shaping

- Traffic monitoring:
 - Monitoring a traffic flow
 - VC no problem
 - Can be done for each VC separately since connection oriented
- DG Transport layer

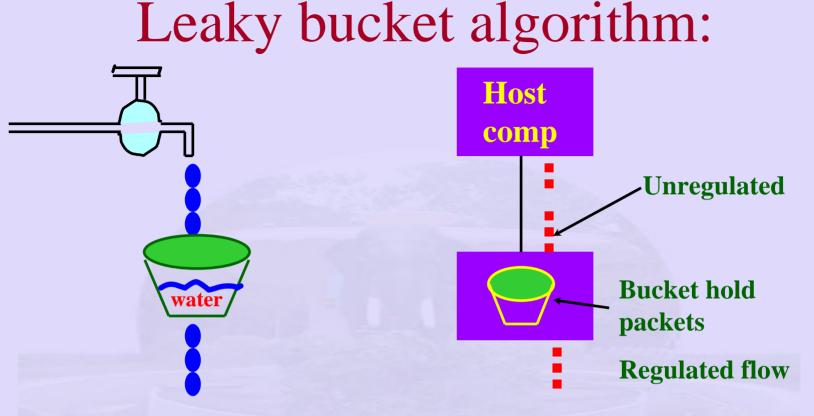
Congestion: Reasons

Congestion causing policies:

- Transport Layer
 - •Retransmission
 - •Out of other caching policy
 - •Ack policy
 - •Flow control policy
 - •Time out
- Network Layer:
 - •VC versus datagram inside subnet
 - Packet queuing and service policy
 - •Packet discard policy
 - Routing algorithm policy
 - •Packet lifetime management policy

Congestion Control (contd.)

• Solution:

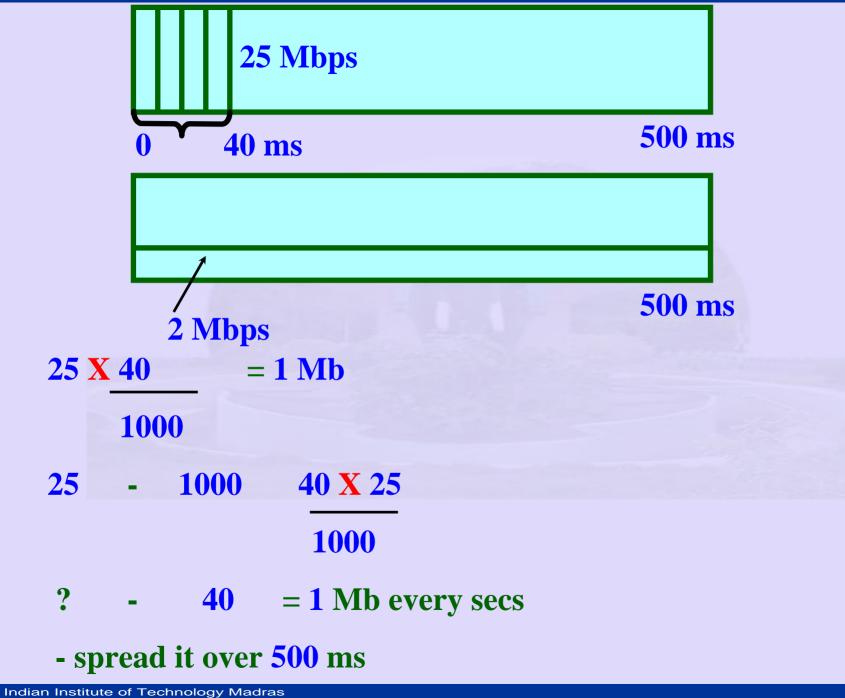

- Traffic prediction?
- Router informs neighbour of possible congestion
- Traffic shaping
- Regulate the packet rate
- VC traffic characteristics
 - Not too important for file transfer but important for audio and video

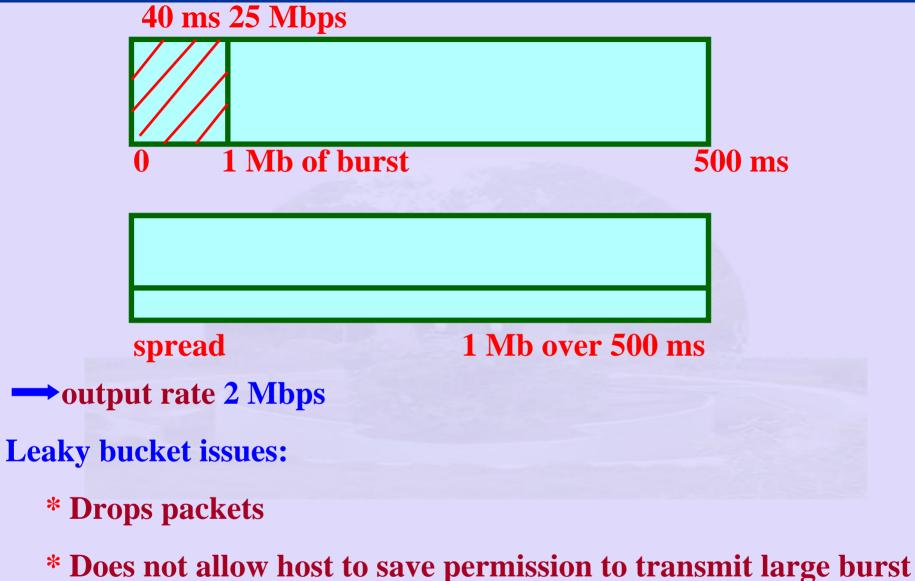
Congestion Control (contd.)

- Send probe packets periodically ask about congestion
 - Road congestion use helicopters flying over cities
 - Bang bang operation of router how does one prevent it
 - Feed back and control required

Congestion Control Algorithms

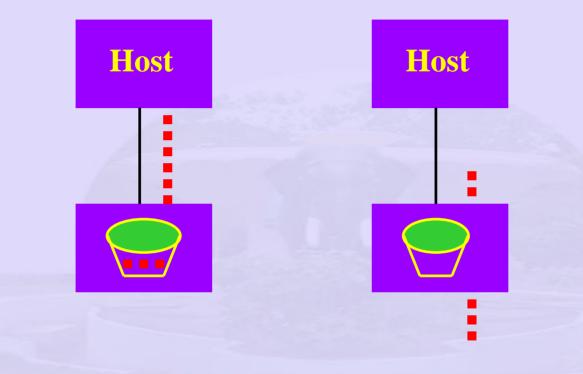
- Leaky Bucket Algorithm
 - Regulate output flow
 - Packets lost if buffer is full
- Token Bucket Algorithm
 - Buffer filled with tokens
 - transmit ONLY if tokens available




Bucket full – lost packets

- Output flow constant
 - when water in bucket zero when no water
- Converts uneven flow to even flow
 - Packets Queued
 - Packets output at regular intervals only

Leaky Bucket Algorithm


- Queue full, packet discarded.
 - What if packets are different size and fixed bytes/ unit time.
- Leaky bucket example
 - Input burst 25 Mb/s every 40 ms
 - Network speed 25 Mbps every second
 - Capacity of bucket C 1 Mb
 - Reduce average rate 2 Mbps
 - bucket can hold upto 1 Mb without data loss,
 - burst spread over 500 ms irrespective of how fast they come

later

Token bucket Algorithm

- Host save packets upto maximum size of bucket, n
- n packets send at once some burstiness
- Host captures token
- Never loose data

- Tokens not available packets queue up! - not discarded

Token Bucket Algorithm

- Packet gets tokens and only then transmitted
 - A variant packets sent only if enough token available - token - fixed byte size
 - Token bucket holds up n tokens
 - Host captures tokens
 - Each token can hold some bytes
 - Token generated every **T** seconds
 - Allows bursts of packets to be sent max n
 - Responds fast to sudden bursts
 - If bucket full thrown token packets not lost

Token Bucket Algorithm (example)

Calculation of length of maximum rate burst:

- Tokens arrive while burst output

Example

S – burst length in **S**

M – Maximum output rate

MS – Maximum byte in lengths

– Token arrival rate

C – Capacity of token bucket in byte

Token Bucket Algorithm (Example)

Maximum output burst = $C + \rho S = MS$

$$\mathbf{S} = \left(\frac{C}{M - \rho}\right)$$

C = 250 KbM = 25 Mbps $\rho = 2 \text{ Mbps}$

S = 11 ml

25 Mbps for 11 ms 364 ms 2 Mbps 11 ms 2 Mbps

Indian Institute of Technology Madras

Indian Institute of Technology Madras

Example specifications

Application to subnet	by Application
IP character	Services desired
Max packet size (bytes)	Loss sensitivity (bytes) / unit time
IP character	Loss interval time (bytes)
Token bucket Rate (r bytes/s)	Burst sensitivity
Token bucket size (b bytes	Min delay noticed
Max transmission rate	Max delay variation
Maximum rate possible Shortost time in which taken bucket emotio	Quality of guarantee
Shortest time in which token bucket emptie	Does application mean it? Maximum delay for a packets

- Congestion control in VCs
 - Admission control
 - •Allow VCs to avoid problem areas avoid routers that are known to congest.
 - •Negotiate agreement between host and subnet
 - •Volume of traffic

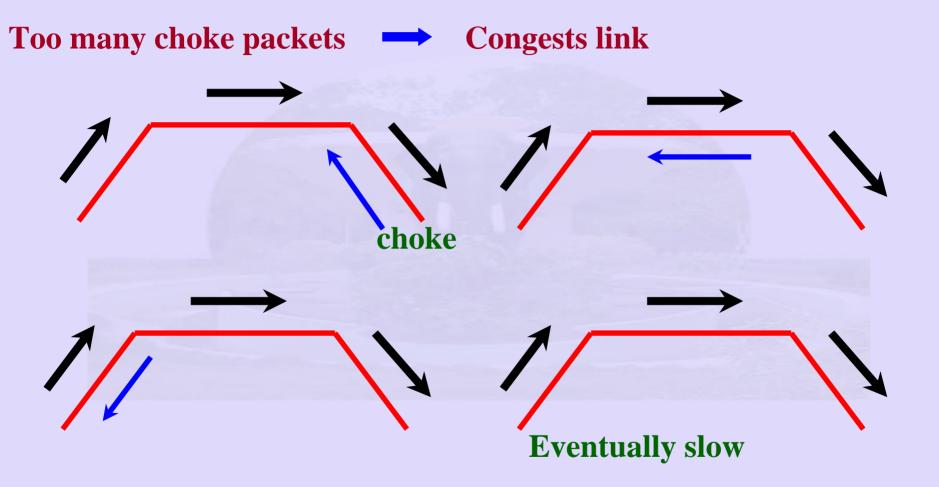
- Flow specification: Response from subnet to application
 - Issues Sometimes application may not know what it wants
- $iitm \longrightarrow imsc fast$
- $iitm \leftrightarrow thajavan slow$

- Shape of traffic
- QoS required
 - Subnet reserves resources along the entire path when VC is setup
- Issues:
 - 3 Mbps link
 - 4 VCs each requiring 0.75 Mbps
 - Wastes bandwidth
 - Unlikely that all VCs are simultaneously used

- Monitor utilisation on output lines
 - Associate a value for each line recent utilisation update

$$\mathbf{u}_{new} = \mathbf{a} \mathbf{u}_{old} + (1-\mathbf{a}) \mathbf{f}$$

- instantaneous line utilisation
 - a memory parameter
 - **u** > threshold implies output lines congests


Congestion Control (Other mechanisms)

- Fair Queuing:
 - Multiple Queues for each output line, for each source
 - Router scans queues in RR fashion
- Issues:
 - More bandwidth to router with large packets
 - Byte by byte round robin

Congestion Control

- Scan queue repeatedly until tick found at which packet done
- Reorder packets in terms of time completion
- Weighted fair queuing:
 - Servers vs Clients
- Hop-by-hop choke packets

Hop-by-Hop Choke Packets

Congestion Control

- Load shedding
 - Discard packets
 - question what to discard?
 - ftp Keep old, discard new
 - audio/ video keep new, discard old
 - need more intelligence:(?)
 - Some packets are more important
 - » Video full frame(don't discard)- difference frame (discard)
 - » Sender prioritises packets!

Congestion Control

- Jitter Control Parameters:
 - Packets ahead/ delayed
 - Strategy flush packet furthest from it schedule first
- Multicast Routing Congestion ?
 - Single source multiple destination
 - **RSVP** Resource reSerVation Protocol

Multicast Routing: Congestion

- Standard multicast
- Spanning tree covering all group members
- For better reception
 - Any receiver in a group can send message up spanning tree
 - Use reverse path forwarding
 - Reserve bandwidth at each hop

Flow Control

- Flow Control is specified end to end
 - Sliding window protocol
 - Fast sender vs. slow receiver
 - Sender does not overwhelm receiver
 - Advertisement of window size
 - receiver tells sender DIRECTLY
 - Process to process
- See More about flow control in TCP