Routing Algorithms

- Adaptive algorithm:
- Reflect change in topology
- Get information locally from adjacent routers
- Non Adaptive Algorithm
- Static routers
- Downloaded to routers when network is booted
- Routing:
- Principle of Optimality:
- If router I on optimal path from router I to K then optimal path from J to K also on same route!

Routing Algorithms(Static)

- Set of all optimal routes from: Source to a given destination
- A sink tree!
- Goal of routing algorithm find sink trees that are there!
- Shortest Path Routing:
- Dijkstra
- Uses topology
- Greedy approach
- Possible shorter path of equal length - need not be unique

Static Routing Algorithms

- Shortest path routing
- To send a packet from one node to another find the shortest path between the pair of nodes
- Multipath Routing
- Multiple paths from Node a to node b.
- Randomly choose one of the paths

Dijkstra (example)

Shortest path from
$A \rightarrow D$ is via b and c

Multipath Routing

- Forward traffic based on - a random number
- Example:Path from a to d
- via b: 0.0-0.65
- via f: 0.65-1.0
- Packet for d from a:
- Generate a random number r:
- If $0<r \leq 0.65$, choose b
- otherwise choose f

Multipath Routing

- Advantages:
- Reliability
- disjoint entries
- multiple routes possible

Static Routing

- Disadvantages:
- SSSP and Multipath:
- Require complete knowledge of Network topology to make a good decision.
- Hot potato routing
- Forward on to shortest Queue (defined by hopcount)
- Use hot potato with static routing
- rank $=$ Shortest Queue + shortest path

Distance Vector Routing

- Distance Vector Routing:
- (Distributed Bellman Ford, Fulkerson)
- Each router maintain a table:
- destination, estimated cost, link, hop count, time delay in ms, queue length, ...
- Updated by exchanging information between router - ICMP

Dynamic Routing

- Distributed Routing:
- Dynamic routing
- Changing topology of the network
- Need to recompute route continuously

Distance Vector Routing

- Compute route from b to g
- via a $-8+18$
via i $-10+31$ so update route to g to 26

Distance Vector Routing

- Example: b wants to update its information

Issues: Count to infinity

Initially	
$\mathrm{b}-\mathrm{x}$	1
$\mathrm{c}-\mathrm{x}$	2
$\mathrm{~d}-\mathrm{x}$	3
$\mathrm{e}-\mathrm{x}$	4
Now down	

\mathbf{x}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
1 exchange	3	2	3	4
2 exchange	3	1	3	4
	5	4	5	4
	5	6	5	6
	7	6	7	6
	7	8	7	8
Count to infinity	\vdots	∞		

Number of exchanges depends on definition of infinity

