Routing Algorithms

• Adaptive algorithm:

- Reflect change in topology
- Get information locally from adjacent routers
- Non Adaptive Algorithm
 - Static routers
 - Downloaded to routers when network is booted
- Routing:
- Principle of Optimality:
 - If router I on optimal path from router I to K then optimal path from J to K also on same route!

Routing Algorithms(Static)

- Set of all optimal routes from: Source to a given destination
 - A sink tree!
- Goal of routing algorithm find sink trees that are there!
- Shortest Path Routing:
 - Dijkstra
 - Uses topology
 - Greedy approach
 - Possible shorter path of equal length need not be unique

Static Routing Algorithms

- Shortest path routing
 - To send a packet from one node to another find the shortest path between the pair of nodes
- Multipath Routing
 - Multiple paths from Node a to node b.
 - Randomly choose one of the paths

Dijkstra (example)

Shortest path from A→D is via b and c

Multipath Routing

- Forward traffic based on a random number
- Example:Path from a to d
 - via b: 0.0 0.65
 - via f: 0.65 -1.0
- Packet for d from a:
 - Generate a random number r:
 - If $0 < r \le 0.65$, choose b
 - otherwise choose f

Multipath Routing

- Advantages:
 - Reliability
 - disjoint entries
 - multiple routes possible

Static Routing

- Disadvantages:
 - SSSP and Multipath:
 - Require complete knowledge of Network topology to make a good decision.
- Hot potato routing
 - Forward on to shortest Queue (defined by hopcount)
 - Use hot potato with static routing
 - rank = Shortest Queue + shortest path

Distance Vector Routing

- Distance Vector Routing:
- (Distributed Bellman Ford, Fulkerson)
 - Each router maintain a table:
 - destination, estimated cost, link, hop count, time delay in ms, queue length, ...
 - Updated by exchanging information between router ICMP

Dynamic Routing

- Distributed Routing:
 - Dynamic routing
 - Changing topology of the network
 - Need to recompute route continuously

Prof. Hema A Murthy

Distance Vector Routing

- Compute route from b to g
- via a 8 + 18
- via i 10 +31
- so update route to g to 26

Distance Vector Routing

• Example: **b** wants to update its information

Issues: Count to infinity

Indian Institute of Technology Madras