Classless Inter Domain Routing

- (CIDR) Classless Interdomain Routing
- Issues address:
 - Large routing table at the backbone
 - Exhaustion of address space
 - Enables aggregation of router
 - A single entry in a routing table
 - Tells how to reach a number of Networks
 - Configures allocation of router

Classless Inter Domain Routing

- •(CIDR) Classless Interdomain Routing
- •Issues address:
 - •Large routing table at the backbone
 - •Exhaustion of address space
 - Enables aggregation of router
 - •A single entry in a routing table
 - •Tells how to reach a number of Networks
 - Configures allocation of router

CIDR (contd.)

– length – number of bits in communication

- Prefixes may be of any length 2-32 bits
- Prefixes might overlap
- Prefixes correspond to longest match

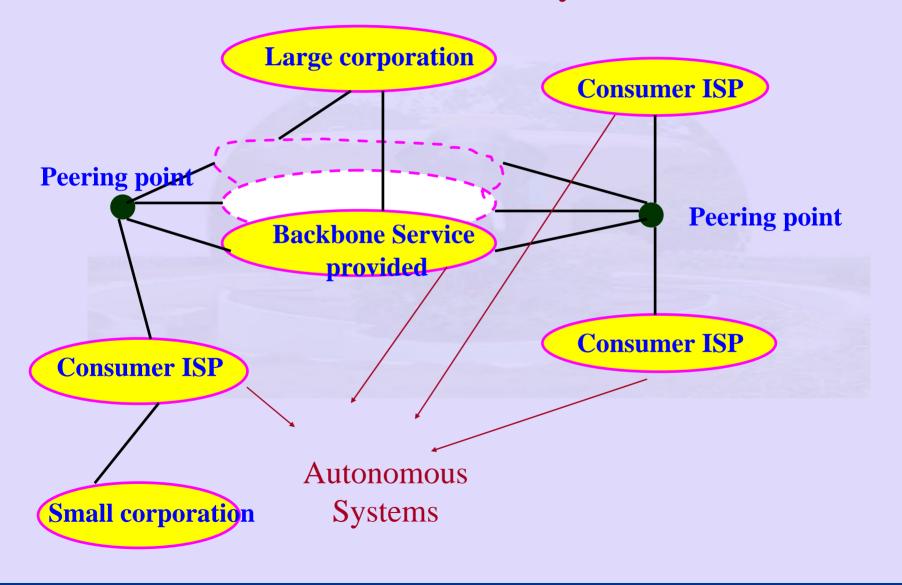
CIDR (contd.)

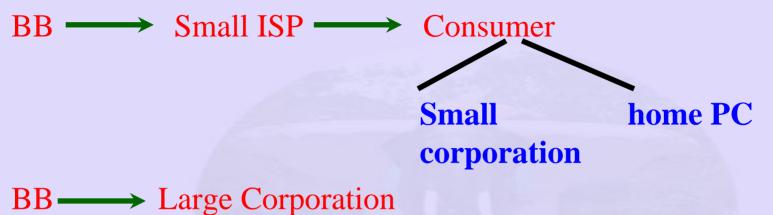
- Example
 - 192.4.16 through 192.4.31
 - Top 20 bits are the same
 - $\ 1100 \ 0000 \ 0000 \ 0100 \ 0001$
 - Router entry for top 20 bits as Network number
 - Basically uses a common network prefix < length, value> pairs

Border Gateway Routing

- Assumes Internet is organised as an Autonomous system
 - Each under the control of a single administration entity
 - Enables hierarchical aggregation of routing information

Border Gateway Routing

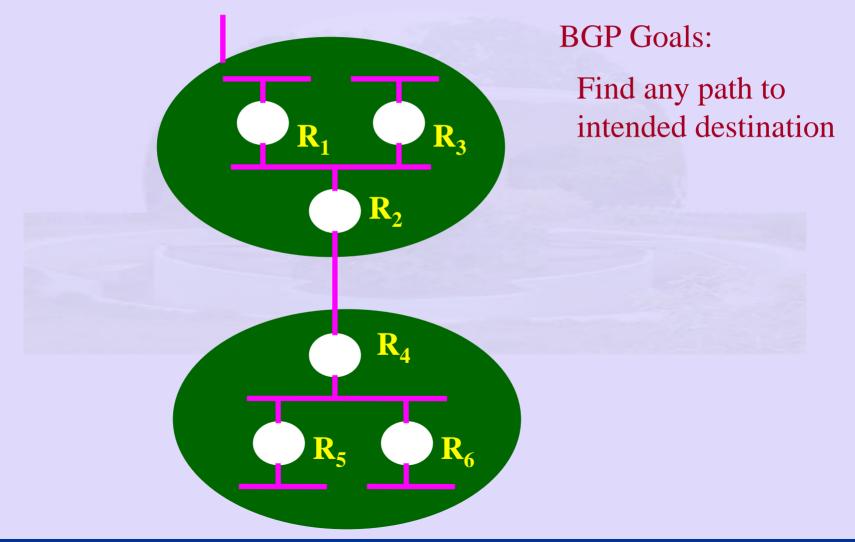

- Routing
 - Routing within a single AS (Intradomain)
 - Routing between ASes (Interdomain)
 - Decouple Intradomain routing in one AS from that in another
 - Each AS can run locally whatever routing algorithm it desires


BGP (contd.)

- Interdomain routing problem ASes share reachability information each other
- Reduces routing information at each AS
 - Use default routes
 - Example tenet Gate Border router Any packets
 destined for outside (at a router inside tenet) sends to
 tenet gateway
 - Finally reaches a backbone provides who knows how to reach all Networks

Border Gateway Protocol

Assumes Internet is an arbitrary connection of ASes

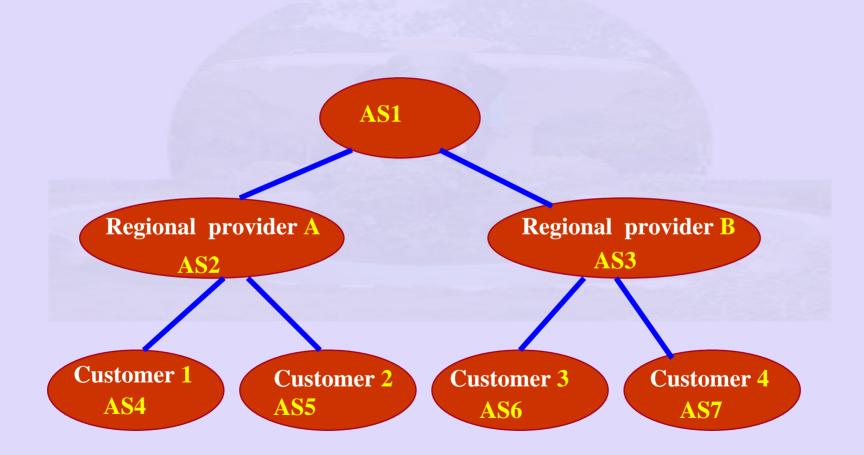


- **Classification of traffic:**
 - Local traffic
 - Traffic originates and terminates within an AS
 - Transit traffic
 - Passes through an AS

BGP (contd.)

- Types of ASes:
 - Stub AS: Single connection to one otheAS
 - Example: Small Corporation
 - only local traffic
 - Multihomed AS: AS has connections to multiple Ases
 - but does not carry transit traffic
 - Example: large corporation
 - Transit AS: Connection to more than one AS
 - - carries both transit and local traffic
 - - backbone provider

- Address issues of flexibility
 - Policy based routing
 - Preferred Ases
 - But only ASes
- Advantage
 - Use "good" paths rather than optimal path


- Configuring BGP:
 - **BGP** speaker
 - Spokesperson for entire AS
 - Establish session with other **BGP** speakers
 - Identify border "Gatewa
 - Routers through which packets enter/ leave A
 - Example R_2 , R_4
- "Gateway" An IP router forwarded packets between ASes

Border Gateway Protocol


- BGP Neither DV or LSP
 - Advertises complete paths
 - Enumerated list of ASes
 - To reach a network
 - Enable policy decisions
 - Enable detection of routing loops

• BGP speaker for A

- Advertises reachability to customers 1 and 2 networks(Each and every NW in customers 1, 2)
- BGP speaker for AS1
 - Advertised reachability to customers 1 and 2 (AS1, AS2)
 - Advertised reachability to customers 3 and 4 (AS3, AS4)

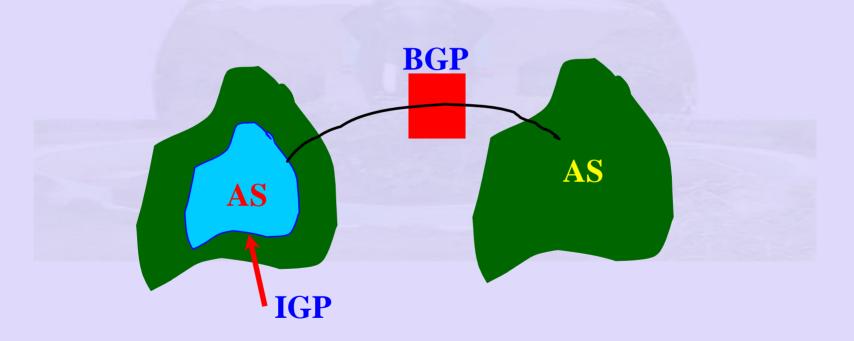
Issues in looping:

Example:

AS1 learns it can reach network 1 via **AS2**

Advertises (AS1, AS2) to AS3

Now AS3 advertises to AS2

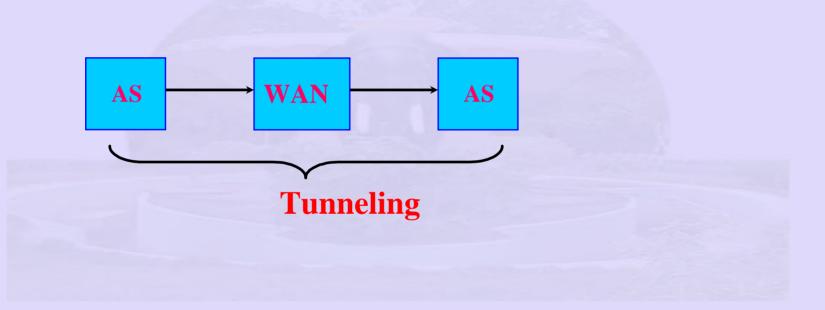

- (AS3, AS1, AS2) to reach network P

AS2 – see it ignores

- Facility for withdrawing routes
 - Example: Failed links
 - Negative route information
- AS number must be unique
 - 16 bit unique AS number
 - does not cover stubs

- BGP designed to cope with classless addresses
 - Networks advertised in BGP are actually prefixes of any length
 - Addresses contain prefix and length 142.4.16/20
 - Complexity of BGP
 - Depends on number of ASes

- Issues backbone routers:
 - Inject prefixed learnt from another AS into its intra domain
 - Complex
- Overcome this?
 - IBGP (Interior Border Gateway Routing Protocol)


- Redistribute information it learnt between routers in a given AS
- Each router in a AS knows best/ border router to route information
- Each router uses intradomain routing to decide which is best border router

- Additional hierarchy:
- Routing Areas
 - Partition routing domain into subdomain
 - Area border routers

Repeaters, Bridges, Routers, Gateways

- Physical layer Repeaters
- DLL Bridges
- Network Layer Multiprotocol router
- Transport Layer Transport Gateways
- Application Layer Application Gateways

Multiprotocol Converter

