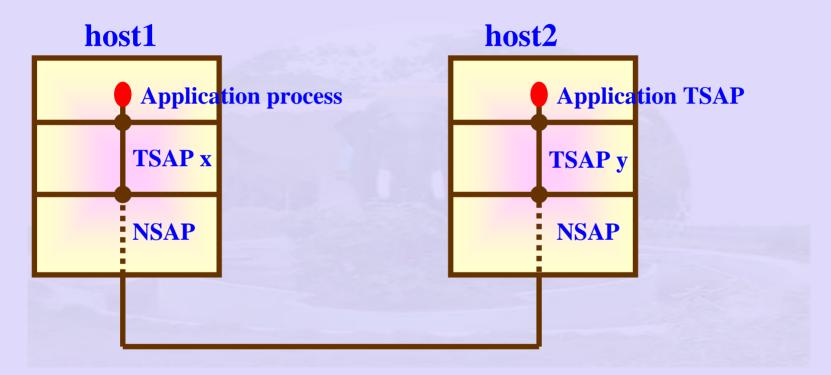


The Transport Layer

- End-to-End Communication
 - Enable processes to communicate
- Transport Services
 - Connection Oriented/ Connectionless
 - User Datagram protocol
 - Transmission control protocol

Transport Layer QoS

- Transport Quality of Service (QoS)
 - Connection establishment delay
 - Connection establishment failure probability
 - Throughput
 - Transit delay (Source to Destination)
 - Residual error ratio
 - Lost packets / total sent


Transport Layer (QoS)

- Protection
- Priority
 - Different transport connection Priorities
 - Resilience Probability of TPL terminating a connection

Transport Layer Primitives

Primitives	TPDU Sent	Meaning
LISTEN	None	Block until some process tries to come
Connect	Connect request	Actively attempt to establish connection
Send	Data	Send Information
Receive	None	Block until a TPDU arrives
Disconnect	Disconnect request	One Side wants to release connection

Connection Management

Connection Management:

Addressing: Well known TSAPs for servers TSAP – Transport Service Access Point

TCP Connection Establishment

- A Directory server on *host2* attaches to *TSAPy* on host
 - Waits for an incoming call (Listen)
- An application process at *host1* wants some directory assistance
- (Source *TSAPx* and Dest *TSAPy*)

TCP Connection Establishment(contd)

- TP entity (host1) sets up network connection between host1 and host2.
 - TP entity asks for connection between TSAP x on host1 and TSAP y on host2.
 - TP entity on host2 check whether TSAP y on host2 is willing to accept a connection
 - if accepted connection established

Issues in Communication

How does *TSAP x* know that *TSAP y* on host2 is the directory server?

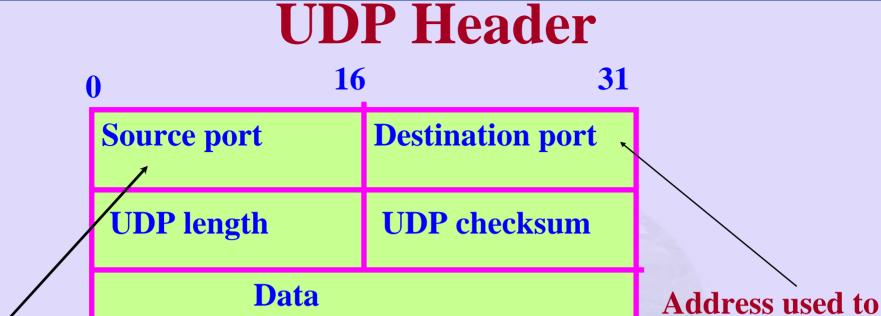
Possibility – this server always attaches itself to TSAP y

Issues – many servers – not always used

Process server

proxy for less - heavily used servers

Properties of the Transport Layer


- Guarantees message delivery (if desired)
- Deliver message in the same order they were sent
- Deliver only one copy of each message
- Support arbitrarily large messages

Properties of the Transport Layer

- Support synchronisation between sender and receiver
- Allow receiver to apply flow control to sender
- Support multiple applications on each host

Transport Layer Services

- Limitations due to underlying Network:
 - A simple asynchronised demultiplexing service
 - A reliable byte stream
 - A request / reply service

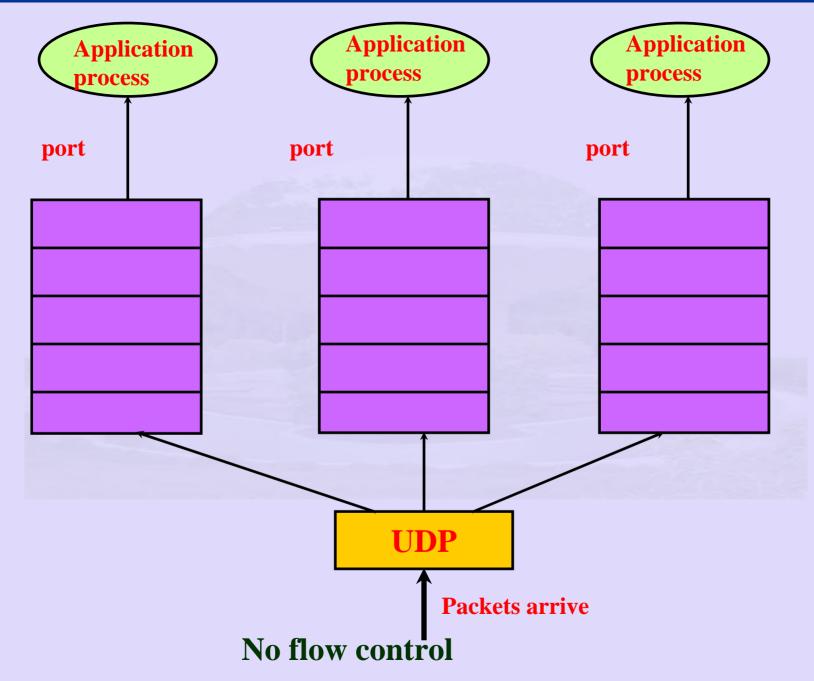
Address used to identify destination address

•Address used to identify host address

- pid (OS assigned?)
- Distributed system/single OS
- - Indirectly identify each other using a port / mailbox

UDP-Continued

- IP address + port uniquely identify a process
 - Demultiplexing key for UDP
- Error Checking:Checksum


UDP header, UDP data + Pseudo header (IP addresses + protocol number + UDP length)

Processes and Ports

- How does the client/server know each other's port number:
- Generally: Server talks on well known port
 Example: DNS requests on 53
 Unix talk on 517
- Mapping services to PortNum /etc/services (Published in a RFC)

Processes and Ports

- Once client talks to server, the server gets client port address
 - sends on that port
 - port only an abstraction
- Vary from OS to OS
 - A message queue
 - Application process removes from queue
 - When message arrives appended to end of
 - queue

