
Process Servers

•Initially user asks for a specific server port

•If server not running connect to process server, which spawns server process.

•This process inherits connection

Process Servers

- Other Applications
 - When a file server cannot be spawned when requested
 - name server
 - directory server
 - User sets up connection to name server, get
 TSAP address and then disconnect.
 - Next connect to the requested TSAP

TCP - Flow Control

- Similar to DLL
 - Since pt-pt connection oriented
 - Some sliding window scheme representation
- Differences
 - Large number of connection
 - Buffers for each different connection
 - impractical

TCP Flow Control (contd.)

- Maintain Pool of buffers
- Buffer size
 - All TPDUs same size than identical size
 - Variable buffer size
 - Complicated buffer management
 - Dynamic buffer allocate agreement between sender and receiver is required.

- Model used in ARPANET and the Internet
- ARPANET
 - Research network by DoD
 - Connect large number of government installations and universities leased telephone lines

- The IP Layer:
 - Packet switching network based on a connectionless
 - Internetwork Layer
 - Holds the whole architecture together
 - Hosts injects packets into any network and each packet travels independently to their destination

- Main criteria:
 - DoD wanted connections to remain intact even if subnet hardware lost, I.e, if existing conversation lost
 - connection must be established as long as source and destination machines function
 - Flexible architecture to suit divergent requirement

- Example: Drop a set of letters in a mail box
 - Mail delivered to address anywhere
 - Transparency in the sense of networks
- Internet layer
 - Specific packet format and protocol
 - Major issue packet routing

- Transport Layer:
 - Allows peer entries to carry a conversation
- Two protocols:
 - TCP and UDP
 - TCP Allows a byte stream originating on one machine
 - delivered without error on the other machine in the internet

- Splits incoming stream to packets and pass to internet layer
- On reception reassemble packets in the right order
- Handle flow control

TCP/IP Reference Model (UDP)

- Unreliable connectionless
 - No sequencing or flow control
 - Useful for one shot client server requests
 - Prompt delivery more important than accurate delivery
 - Example: Speech / video

TCP/IP Reference Model(UDP)

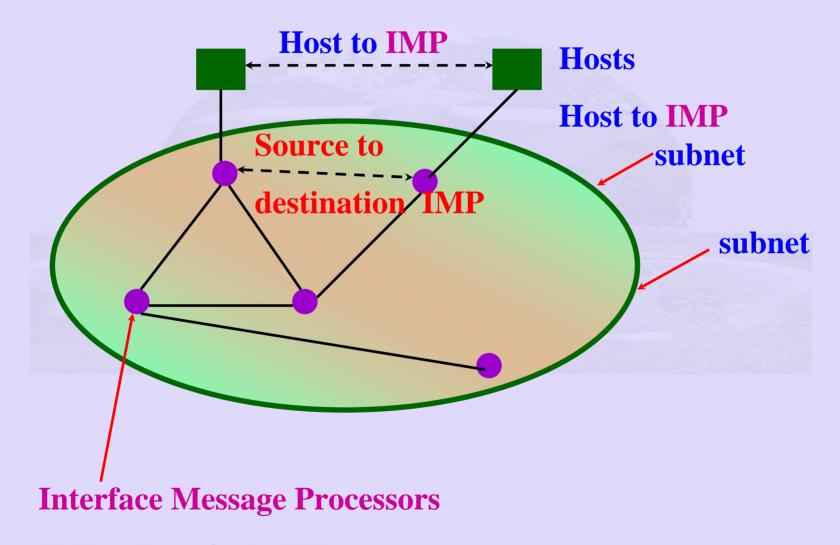
- Why is accurate delivery not important?
- What are the issues here?
- Dropping of packets in speech
 - Packets out of order?

- OSI Protocol is better hidden
- OSI Devised before protocols
- Originally only ppp but on line went by broadcast did not match
- TCP/ IP: Protocols first
- Model Just a description of protocols

- In OSI:
 - Network Connectionless/ Connection oriented
 - Transport Only Connection oriented
- In TCP:
 - Connectionless/ Connection oriented
 - Very useful for simple request reply

- OSI: Service, Interfaces and protocols
- Layers Interface: How layer above it access it, what parameter and results to expect
- Peer protocols: Used in a layer are the layer's business
 - Layer is equivalent to an Object
 - Set of methods

- TCP/ IP no distinction between protocol and service –
 - later retrofitted
- IP
 - Send IP packet
 - Receive IP packet


- Host to network (TCP/IP)
 - Not really a layer. Interface between network and data link laye
 - No distinction between physical and data link layer
 - Adhoc application layer protocols
 - TELNET: Virtual terminal designed for a character terminal
 - no more than a UI

- Hybrid Model
 - Application
 - Transport
 - Network
 - Data link
 - Physical

• OSI:

- Difficult to Implement

ARPANET - Packet Switched Network

