Index of /nptel/computing/Reinforcement Learning

[ICO]NameLast modifiedSizeDescription

[PARENTDIR]Parent Directory  -  
[VID]1-Tutorial 1 - Probability Basics 1.mp42020-07-31 15:46 39M 
[VID]10- UCB 1.mp42020-07-31 15:46 353M 
[VID]11- Concentration Bounds.mp42020-07-31 15:48 651M 
[VID]12- UCB 1 Theorem.mp42020-07-31 15:49 627M 
[VID]13- PAC Bounds.mp42020-07-31 15:50 808M 
[VID]14- Median Elimination.mp42020-07-31 15:51 477M 
[VID]15- Thompson Sampling.mp42020-07-31 15:51 381M 
[VID]16- Policy Search.mp42020-07-31 15:52 651M 
[VID]17- REINFORCE.mp42020-07-31 15:53 639M 
[VID]18- Contextual Bandits.mp42020-07-31 15:54 337M 
[VID]19- Full RL Introduction.mp42020-07-31 15:55 958M 
[VID]2- Tutorial 1-Probability basics2.mp42020-07-31 15:56 51M 
[VID]20- Returns, Value Functions and MDPs.mp42020-07-31 15:57 682M 
[VID]21- MDP Modelling.mp42020-07-31 15:58 847M 
[VID]22- Bellman Equation.mp42020-07-31 15:59 373M 
[VID]23- Bellman Optimality Equation.mp42020-07-31 16:00 757M 
[VID]24- Cauchy Sequence and Green.mp42020-07-31 16:01 838M 
[VID]25- Banach Fixed Point Theorem.mp42020-07-31 16:02 696M 
[VID]26- Convergence Proof.mp42020-07-31 16:03 479M 
[VID]27- Lpi Convergence.mp42020-07-31 16:04 351M 
[VID]28- Value Iteration.mp42020-08-01 10:15 640M 
[VID]29- Policy Iteration.mp42020-08-01 10:15 362M 
[VID]3- Tutorial 2-Linear algebra-1.mp42020-08-01 10:15 45M 
[VID]30- Dynamic Programming.mp42020-08-01 10:17 901M 
[VID]31- Monte Carlo.mp42020-08-01 10:18 602M 
[VID]32- Control in Monte Carlo.mp42020-08-01 10:19 729M 
[VID]33- Off Policy MC.mp42020-08-01 10:20 439M 
[VID]34- UCT.mp42020-08-01 10:21 971M 
[VID]35- TD(0).mp42020-08-01 10:23 921M 
[VID]36- TD(0) Control.mp42020-08-01 10:23 572M 
[VID]37- Q-Learning.mp42020-08-01 10:25 794M 
[VID]38- Afterstate.mp42020-08-01 10:25 192M 
[VID]39- Eligibility Traces.mp42020-08-01 10:26 700M 
[VID]4- Tutorial 2-Linear algebra-2.mp42020-08-01 10:26 42M 
[VID]40- Backward View of Eligibility Traces.mp42020-08-01 10:28 880M 
[VID]41- Eligibility Trace Control.mp42020-08-01 10:29 865M 
[VID]42- Thompson Sampling Recap.mp42020-08-01 10:30 587M 
[VID]43- Function Approximation.mp42020-08-01 10:31 377M 
[VID]44- Linear Parameterization.mp42020-08-01 10:31 169M 
[VID]45- State Aggregation Methods.mp42020-08-01 10:31 251M 
[VID]46- Function Approximation and Eligibility Traces.mp42020-08-01 10:32 730M 
[VID]47- LSTD and LSTDQ.mp42020-08-01 10:34 740M 
[VID]48- LSPI and Fitted Q.mp42020-08-01 10:34 464M 
[VID]49- DQN and Fitted Q-Iteration.mp42020-08-01 10:34 95M 
[VID]5- Introduction to RL.mp42020-08-01 10:36 718M 
[VID]50- Policy Gradient Approach.mp42020-08-01 10:36 120M 
[VID]51- Actor Critic and REINFORCE.mp42020-08-01 10:36 54M 
[VID]52- REINFORCE (cont.mp42020-08-01 10:36 115M 
[VID]53- Policy Gradient with Function Approximation.mp42020-08-01 10:36 94M 
[VID]54- Hierarchical Reinforcement Learning.mp42020-08-01 10:37 817M 
[VID]55- Types of Optimality.mp42020-08-01 10:38 590M 
[VID]56- Semi Markov Decision Processes.mp42020-08-01 10:39 690M 
[VID]57- Options.mp42020-08-01 10:40 601M 
[VID]58- Learning with Options.mp42020-08-01 10:41 719M 
[VID]59- Hierarchical Abstract Machines.mp42020-08-01 10:43 952M 
[VID]6- RL Framework and applications.mp42020-08-01 10:44 773M 
[VID]60- MAXQ.mp42020-08-01 10:45 782M 
[VID]61- MAXQ Value Function Decomposition.mp42020-08-01 10:46 640M 
[VID]62- Option Discovery.mp42020-08-01 10:47 409M 
[VID]63- POMDP Introduction.mp42020-08-01 10:48 874M 
[VID]64- Solving POMDP.mp42020-08-01 10:49 836M 
[VID]7- Introduction to Immediate RL.mp42020-08-01 10:50 653M 
[VID]8- Bandit Optimalities.mp42020-08-01 10:51 471M 
[VID]9- Value function based methods.mp42020-08-01 10:52 607M 

Apache/2.4.18 (Ubuntu) Server at krc.ruj-bsdu.in Port 82