Index of /nptel/computing/Reinforcement Learning
Name
Last modified
Size
Description
Parent Directory
-
1-Tutorial 1 - Probability Basics 1.mp4
2020-07-31 15:46
39M
10- UCB 1.mp4
2020-07-31 15:46
353M
11- Concentration Bounds.mp4
2020-07-31 15:48
651M
12- UCB 1 Theorem.mp4
2020-07-31 15:49
627M
13- PAC Bounds.mp4
2020-07-31 15:50
808M
14- Median Elimination.mp4
2020-07-31 15:51
477M
15- Thompson Sampling.mp4
2020-07-31 15:51
381M
16- Policy Search.mp4
2020-07-31 15:52
651M
17- REINFORCE.mp4
2020-07-31 15:53
639M
18- Contextual Bandits.mp4
2020-07-31 15:54
337M
19- Full RL Introduction.mp4
2020-07-31 15:55
958M
2- Tutorial 1-Probability basics2.mp4
2020-07-31 15:56
51M
20- Returns, Value Functions and MDPs.mp4
2020-07-31 15:57
682M
21- MDP Modelling.mp4
2020-07-31 15:58
847M
22- Bellman Equation.mp4
2020-07-31 15:59
373M
23- Bellman Optimality Equation.mp4
2020-07-31 16:00
757M
24- Cauchy Sequence and Green.mp4
2020-07-31 16:01
838M
25- Banach Fixed Point Theorem.mp4
2020-07-31 16:02
696M
26- Convergence Proof.mp4
2020-07-31 16:03
479M
27- Lpi Convergence.mp4
2020-07-31 16:04
351M
28- Value Iteration.mp4
2020-08-01 10:15
640M
29- Policy Iteration.mp4
2020-08-01 10:15
362M
3- Tutorial 2-Linear algebra-1.mp4
2020-08-01 10:15
45M
30- Dynamic Programming.mp4
2020-08-01 10:17
901M
31- Monte Carlo.mp4
2020-08-01 10:18
602M
32- Control in Monte Carlo.mp4
2020-08-01 10:19
729M
33- Off Policy MC.mp4
2020-08-01 10:20
439M
34- UCT.mp4
2020-08-01 10:21
971M
35- TD(0).mp4
2020-08-01 10:23
921M
36- TD(0) Control.mp4
2020-08-01 10:23
572M
37- Q-Learning.mp4
2020-08-01 10:25
794M
38- Afterstate.mp4
2020-08-01 10:25
192M
39- Eligibility Traces.mp4
2020-08-01 10:26
700M
4- Tutorial 2-Linear algebra-2.mp4
2020-08-01 10:26
42M
40- Backward View of Eligibility Traces.mp4
2020-08-01 10:28
880M
41- Eligibility Trace Control.mp4
2020-08-01 10:29
865M
42- Thompson Sampling Recap.mp4
2020-08-01 10:30
587M
43- Function Approximation.mp4
2020-08-01 10:31
377M
44- Linear Parameterization.mp4
2020-08-01 10:31
169M
45- State Aggregation Methods.mp4
2020-08-01 10:31
251M
46- Function Approximation and Eligibility Traces.mp4
2020-08-01 10:32
730M
47- LSTD and LSTDQ.mp4
2020-08-01 10:34
740M
48- LSPI and Fitted Q.mp4
2020-08-01 10:34
464M
49- DQN and Fitted Q-Iteration.mp4
2020-08-01 10:34
95M
5- Introduction to RL.mp4
2020-08-01 10:36
718M
50- Policy Gradient Approach.mp4
2020-08-01 10:36
120M
51- Actor Critic and REINFORCE.mp4
2020-08-01 10:36
54M
52- REINFORCE (cont.mp4
2020-08-01 10:36
115M
53- Policy Gradient with Function Approximation.mp4
2020-08-01 10:36
94M
54- Hierarchical Reinforcement Learning.mp4
2020-08-01 10:37
817M
55- Types of Optimality.mp4
2020-08-01 10:38
590M
56- Semi Markov Decision Processes.mp4
2020-08-01 10:39
690M
57- Options.mp4
2020-08-01 10:40
601M
58- Learning with Options.mp4
2020-08-01 10:41
719M
59- Hierarchical Abstract Machines.mp4
2020-08-01 10:43
952M
6- RL Framework and applications.mp4
2020-08-01 10:44
773M
60- MAXQ.mp4
2020-08-01 10:45
782M
61- MAXQ Value Function Decomposition.mp4
2020-08-01 10:46
640M
62- Option Discovery.mp4
2020-08-01 10:47
409M
63- POMDP Introduction.mp4
2020-08-01 10:48
874M
64- Solving POMDP.mp4
2020-08-01 10:49
836M
7- Introduction to Immediate RL.mp4
2020-08-01 10:50
653M
8- Bandit Optimalities.mp4
2020-08-01 10:51
471M
9- Value function based methods.mp4
2020-08-01 10:52
607M
Apache/2.4.18 (Ubuntu) Server at krc.ruj-bsdu.in Port 82